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Abstract—Mathematical analysis of a simple, one-dimensional, canonical problem has yielded a
number of scaling laws that relate various characteristic features of an adiabatic shear band to the
physical properties of the material and the ambient conditions. Specific formulas have been obtained
from solutions to linear and non-linear problems coupled with asymptotic representations of the
results. Examples are shear band width, most sensitive strain rate and shear band spacing. Other
results show the equivalence of initial fluctuations in strength or temperature, and still others show
how to scale the defect in formulas for estimating the timing of localization. The paper summarizes
previous results and presents some new formulas that show how strain rate sensitivity affects band
spacing, number density and morphology as a function of strain rate.

1. INTRODUCTION

Adiabatic shear bands are a major damage mechanism that occur in ductile materials
during high rate deformation. The basic mechanism, which is now well known, is as follows.
Plastic working is converted into thermal energy that heats up the material. Since most
metals suffer a loss of strength as temperature increases, there is competition between work
hardening and strain rate hardening on the one hand, and thermal softening on the other.
At some critical condition softening wins, and a short time later localization into a shear
band occurs with a drastic loss of shear strength. In some circumstances many small bands
may form throughout a volume of material, in which case a general weakening occurs with
the possibility of multiple failures and a general fragmentation. In other circumstances one
band may dominate, and then material failure is restricted to just that one location.

In any case the designer would benefit from understanding the circumstances and
processes by which localization occurs, for with understanding comes the possibility of
control. There are important military applications in penetration mechanics, shock loading
and impact. There are also important civil applications in crash worthiness and design of
impact tools, but most important of all, in high speed metal working and forming, i.e. in
fundamental manufacturing processes.

In all the applications mentioned above it should be useful to have available simple
formulas that characterize major features of the deformation patterns, such as timing,
intensity, morphology and location. If those formulas depend only on well-established
physical properties, or at most on response functions that may be readily measured in any
well-equipped physical laboratory, then they attain the highest level of usefulness and a
status that merits the name scaling law.

Such laws may come from experimentation, but in the case of adiabatic shear bands
the phenomena are sufficiently complicated and there are such a large number of non-
dimensional parameters that mathematical analysis, sometimes guided by numerical analy-
sis, is required to isolate the desired parametric effects. Since shear bands are very narrow
in comparison with their other dimensions, one-dimensional simple shearing is a canonical
problem that captures much of the observed phenomena and often shows how the physical
and geometric parameters are organized. The full problem is highly non-linear and only
solutions to the non-linear equations can show the full detail of the phenomena, but
solutions to linearized equations also may show how the variables are organized and reveal
major aspects of patterns that persist in the non-linear solutions.
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2. MODEL EQUATIONS

In one dimension a simple set of equations that can serve as a model for plastic
deformation in simple shear is as follows:

momentum : pr, =,

energy : pcl, = kU, +sv,

flow law : s =F(k,0,v,)

work hardening: x, = M(x,0.v,). (N

In these equations ¢ is particle velocity parallel to the band, which extends in the x direction,
s 1s shear stress, 0 is temperature relative to a reference temperature 7, and x is the work
hardening parameter. The density is p, heat capacity is ¢ and thermal conductivity is k.
Subscripts denote partial differentiation with respect to time, ¢, or the spatial coordinate,
v. Equations (1) represent a rigid/plastic material with work hardening (¢F/ox > 0 and
M > 0), rate hardening (¢6F/0v, > 0) and thermal softening (0F/20 < 0). For a perfectly
plastic material M = 0.

A characteristic length is 4, a characteristic strain rate is j,, a characteristic stress is
given by S, = F(k,. 0, 7), a characteristic work hardening parameter is x, and the initial
absolute temperature is 7, so that the initial relative temperature is zero. Two other physical
parameters that will be needed are the coefficient of thermal softening ¢ = — F)/F and the
strain rate sensitivity m = (¢ log F)/(¢ log 7).

3. TYPICAL RESULTS

For a rigid/perfectly plastic material (no work hardening) with linear thermal softening
and power law rate hardening, a representative flow law may be written as

s = Ko (1 —a) (14 bv,)". 2)

Since the strain rates of interest are high, eqn (2) may be rewritten as
s = K(1—at)e?, (3)

where K = rob”. K may be thought of as the flow stress at a strain rate of 1 s™', although
it has the rather unusual dimensions of stress—(time)™.

Wright and Walter (1987) examined the response to a small perturbation in tem-
perature for such a material, and in a typical calculation it was found that the perturbation
grew slowly at first, with the temperature and strain rate just compensating each other so
that the stress decreased slowly as if there were no perturbation at all. Then when a critical
strain was reached, the stress dropped sharply while the temperature and strain rate
increased extremely rapidly in the center of the perturbation as the localization formed.
Finally, in a fully formed band the velocity profile showed a smooth but rapid, jump from
one nearly constant value to another with an extremely rapid transition through a narrow
zone. At the same time, in the fully formed band there was a further slow decrease of stress,
a slow increase of the central temperature and no further change of temperature at a
distance from the band since there was no further plastic work there. The overall picture
then is one of nearly uniform velocity gradient changing rapidly to one where two nearly
rigid blocks of material translate relative to each other with one sliding over the other, and
with only a narrow transition zone separating the two.

When the fully developed band ““pops in”, the central strain rate may reach several
orders of magnitude over the ambient rate, i.e. 7,../% = O (10%) or O (10%), and the
morphology of the fully developed band changes only slowly thereafter. It was found by
numerical experiment (Wright and Walter, 1987), that the critical strain in a particular case
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depended on the nominal strain rate and that the dependence could be described by a U-
shaped curve, as shown in Fig. 1. As the nominal strain rate decreased towards a small but
finite value, the critical strain tended towards infinity, indicating complete stability, and as
the nominal strain rate became large, the critical strain first decreased to a minimum and
then increased towards infinity, again indicating stability at extremely high strain rates. In
the left-hand branch at the lower strain rates, stability is achieved through heat conduction,
and in the right-hand branch stability is achieved through inertia at high strain rates. The
properties of the U-curve have been described in several papers, and several scaling laws
have been obtained for the simple model with linear softening. For example, as shown by
Wright (1990), the U-curve itself scales like

—Ay=U
pcm

asS, peiiio 2m
( 70050 ) > Clog 275 )

where Ay is the critical strain at localization and 46 is the magnitude of the perturbation in
temperature. In eqn (4), note that the argument of U is proportional to 7,, which was the
computational parameter in Wright and Walter (1987) that generated the U-curve in the
first place.

The minimum in the U-curve can be found by examining the early growth rate of
perturbations, as shown by Ockendon and Wright (1993). There it was shown that if the
length scale is held fixed, as it would be in a Hopkinson torsion bar test, then the strain
rate for maximum rate of growth, and hence the minimum in the U-curve, is given approxi-

mately by
7.C4/3m kC 1/3 TCZ"’}mZ S CZ 113
o= T[w 2 + 2/3 [Ml)‘::l ? ©)
217 LAtat S, 2473 | kas*

and this predicted well the minimum of the U-curve in Wright and Walter (1987). On the
other hand, for fixed strain rate in an infinite medium, Ockendon and Wright (1993) showed
that the wavelength that grows the fastest is given approximately by

mike 14 mike M
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Equation (6) may also be interpreted as the most probable minimum spacing for shear
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Fig. 1. Sketch of a typical U-curve.
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bands in the region, and its reciprocal is the expected number density, N per unit length.
With the nominal strain rate given and the band spacing now known, the velocity jump
across one band must be given by

(7

m3kc*'/'[1f"‘ 1/4
Av=Lj,=2n| ———| .
2

a K

The cross-section of a fully formed shear band has a well-defined morphology, which
may be calculated as the characteristic function in a non-linear eigenvalue problem, as
shown by Wright and Ockendon (1992) and extended by Glimm et @/. (1993). It turns out
that the maximum strain rate in the band, ... the half-width of the most rapidly shearing
section of the band, J, and the velocity jump across the band, Av, are related by 67,,.., = Av/2,
as well as by the following formulas :

1 2
. [l=m aki=n (AN [r'(l=-m)’mcK | Eaom
Imax T m k 2 - k /0

| +m

1
5= m ._k~ T—_m. AvNT-m
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I 4m | | —3n; 3-m 3—m 1+m 1+m

— A Y — -
=7 1 m(l 7m) l--m rn4(1 —m) kA(l —m) a K 4(1 —m) ¢ 4(1 —niy ,}',0 4 . (8)

The first form for each of ., and & applies to the jump across a single band, which may
be forced by the experimental setup, and was given by Wright and Ockendon (1992). The
second form applies when multiple bands can form freely in the bulk material and follows
from use of eqn (7). Equations (6)—(8) may now be used to calculate, or at least estimate,
all physical features associated with band formation in a region undergoing high strain
rate, including an estimate of minimum fragment size at failure if size is assumed to be
correlated with band spacing.
The percentage of material involved in localization is given by the ratio 6/L:

1
5 l l k.‘lim 2(1—m
o 1 _ )'(,, T=m ©)
L 2|21 —-m)> mcK

It is more difficult to obtain solid analytical results for a rigid/work hardening material
because of the extra degree of freedom introduced by the evolution of the work harden-
ing parameter. Nevertheless, some results have been obtained, at least for special cases.
With power law work hardening, that is xk = k(1 +7/7,)" in slow loading and M =
(n/79)(k/Ke) " "so, in high rate loading, it turns out that there is an equivalence between de-
fects in temperature and defects in strength if they are properly scaled and their relative
magnitudes are only a few percent (Wright, 1994). For this case, other than in an initial
boundary layer in time, all aspects of the solution depend only on the combination

30(»)— 2 dre(y). (10)
pe

where eqn (10) refers only to the initial perturbations in temperature and strength. For the
work hardening case, as for the perfectly plastic case, numerical examples have indicated
that the critical strain at localization depends on the nominal strain rate through a U-curve
in much the same manner as for the perfectly plastic case (Walter, 1992). The critical strain
now is composed of two parts: first, the strain to maximum stress where strain softening
begins ; and second, the remaining strain to localization. It turns out that the first part may
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Table 1. Effect of nominal strain rate on band characteristics

Yo L Av Fmax ) L/é
™" (mm)  (ms™") (s"h (um)
200 11.5 23 1.73x 10° 0.67 1.7 x 10*
2000 2.0 4.0 5.47 x 10° 0.37 5.5x 10°
20,000 0.36 7.1 17.3x 10° 0.21 1.7x10°
200.000 0.063 12.5 54.7 x 10° 0.11 5.5x10°

+In this example m = 0.02, a = 0.002 K "', kp”" = 5x 10° Pa, k = SOW
m'K L ¢=500)kg 'K

be approximated from uniform deformation without regard to perturbations, and numerical
examples given by Wright (1994) have suggested that the final part may often be approxi-
mated by the following expression,

[(nm\  aS,Ay m
. “>log— 11
\/ < 2n ) pcm log alof — (ye/pc)ox] (1

where [60 — (y,/pc)dk] is the maximum initial perturbation.

4. DISCUSSION

Although results are more complete for the perfectly plastic case than for the work
hardening case, the similarity between eqns (4) and (11), which make predictions regarding
the timing of localization, is very striking. The extra factor on the left-hand side of eqn (11)
comes from the asymptotic evaluation of an integral at the peak stress, as explained in
detail by Wright (1992). In addition, the total strain at localization must include the strain
to peak stress which, of course, is zero for the perfectly plastic case. Both formulas show
the necessity for proper scaling in order to understand the interplay of material properties
and timing of localization.

It may be speculated that the various formulas, eqns (5)—(9), which were obtained for
the perfectly plastic case, also have some bearing for the work hardening case. Except for
numerical factors and other factors arising from rate dependence, these five formulas each
have a counterpart for a rate-independent material, as described by Grady and Kipp (1987),
and have the same essential dependence on &, ¢, @, K and 7,. Table 1 gives an example of
the values predicted by these formulas for a material with properties like those of a typical
steel. Note particularly how the spacing, and hence the number density, change with
nominal strain rate roughly as v, *** and 73’*, respectively, but the maximum strain rate in
a band changes only as 7)°, and the width of a shear band changes more slowly still,
varying only as 75 ' *. This accords with the observation that for a given material shear
bands have a similar appearance, even though loading rates may vary widely. Note
especially how the dependence for a single band, which varies essentially as 5!, switches
to a dependence on 75 ' * due to the multiplication of bands being favored, rather than
increased intensity in a single band.
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